On electromagnetic instabilities at ultra-relativistic shock waves

نویسندگان

  • Martin Lemoine
  • Guy Pelletier
چکیده

Recent work on Fermi acceleration at ultra-relativistic shock waves has demonstrated the need for strong amplification of the background magnetic field on very short scales. Amplification of the magnetic field by several orders of magnitude has also been suggested by observations of gamma-ray bursts afterglows, both in downstream and upstream plasmas. This paper addresses this issue of magnetic field generation in a relativistic shock precursor through micro-instabilities. In a generic superluminal configuration, the level of magnetization of the upstream plasma turns out to be a crucial parameter, notably because the length scale of the shock precursor is limited by the Larmor rotation of the accelerated particles in the background magnetic field and by the speed of the shock wave. We discuss in detail and calculate the growth rates of the following beam plasma instabilities seeded by the accelerated and reflected particle populations: for an unmagnetized shock, the Weibel and filamentation instabilities, as well as the Čerenkov resonant instabilities with electrostatic modes; for a magnetized shock, the Weibel instability and the resonant Čerenkov instabilities with the longitudinal electrostatic modes, as well as the Alfvén, Whisler and extraordinary modes. All these instabilities are generated upstream, then they are transmitted downstream. The modes excited by Čerenkov resonant instabilities take on particular importance with respect to the magnetisation of the downstream medium since, being plasma eigenmodes, they have a longer lifetime than the Weibel modes. We discuss the main limitation of the wave growth associated with the length of precursor and the magnetisation of the upstream medium for both oblique and parallel relativistic shock waves. We also characterize the proper conditions to obtain Fermi acceleration at ultra-relativistic shock waves: for superluminal shock waves, the Fermi process works for values of the magnetization parameter below some critical value, and there is an intrinsic limitation of the achievable cosmic ray energy depending on the ratio of the magnetization to its critical value. We recover results of most recent particle-in-cell simulations and conclude with some applications to astrophysical cases of interest. In particular, Fermi acceleration in pulsar winds is found to be unlikely whereas its development appears to hinge on the level of upstream magnetization in the case of ultra-relativistic gamma-ray burst external shock waves.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Fermi acceleration and MHD-instabilities at ultra-relativistic magnetized shock waves

Fermi acceleration can take place at ultra-relativistic shock waves if the upstream or downstream magnetic field has been remodeled so that most of the magnetic power lies on short spatial scales. The relevant conditions under which Fermi acceleration become efficient in the presence of both a coherent and a short scale turbulent magnetic field are addressed. Within the MHD approximation, this ...

متن کامل

On the Efficiency of Fermi Acceleration at Relativistic Shocks

It is shown that Fermi acceleration at an ultra-relativistic shock wave cannot operate on a particle for more than 1 1/2 Fermi cycle (i.e., u → d → u → d) if the particle Larmor radius is much smaller than the coherence length of the magnetic field on both sides of the shock, as is usually assumed. This conclusion is shown to be in excellent agreement with recent numerical simulations. We thus ...

متن کامل

شبیه‌سازی ذره‌ای شتاب دادن الکترون‌ها در پلاسمای کم چگال

One of the interesting Laser-Plasma phenomena, when the laser power is high and ultra intense, is the generation of large amplitude plasma waves (Wakefield) and electron acceleration. An intense electromagnetic laser pulse can create plasma oscillations through the action of the nonlinear pondermotive force. electrons trapped in the wake can be accelerated to high energies, more than 1 TW. Of t...

متن کامل

Ultra- Relativistic Solitons with Opposing Behaviors in Photon Gas Plasma

We have studied the formation of relativistic solitary waves due to nonlinearinteraction of strong electromagnetic wave with the plasma wave. Here, our plasma isrelativistic both in temperature and in streaming speed. A set of equations consisting ofscalar and vector potentials together with a third order equation for the enthalpy inphoton gas plasma is obtained analytic...

متن کامل

Electron-ion coupling upstream of relativistic collisionless shocks

It is argued and demonstrated by particle-in-cell simulations that the synchrotron maser instability could develop at the front of a relativistic, magnetized shock. The instability generates strong low-frequency electromagnetic waves propagating both upstream and downstream of the shock. Upstream of the shock, these waves make electrons lag behind ions so that a longitudinal electric field aris...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009